Set 5: Nuclei and Radiation Solutions

51

5.1					
		Protons	Neutrons	Element	
А	$^{17}O_{8}$	8	9	Oxygen	
В	$^{40}K_{19}$	19	21	Potassium	
С	$^{234}U_{92}$	92	142	Uranium	
D	$^{241}Am_{95}$	95	146	Americium	

5.2		
	Balancing Number of Nucleons/Protons	Particle
А	27 nucleons on left, 26 nucleons on right	1 Proton: ${}^{1}H_{1}$
	13 protons on left, 12 protons on right	
	Proton emitted.	
В	Beta particle emitted, Neutron changing into a proton and emitting an	²³⁹ Pu ₉₄
	electron.	
	Parent particle increases by one proton. Mass number does not change.	
С	22 nucleons on left, 22 nucleons on right.	${}^{0}e_{+1}$
	Likely to be beta or positron decay	Positron
	Parent decrease by one proton.	
	Mass number does not change.	
	Opposite of Beta.	
D	Gamma particle emitted.	¹³¹ I ₅₃ *
	Require excited parent nuclei	
E	8 nucleons on left, required 8 nucleons on right.	⁴ He ₂
	4 protons on left, require 4 protons on left.	
	2 in front means two nuclei the same	

5.3

	Balancing Number of Nucleons/Protons	Equation
Α	All decays are Alpha/Absorption therefore must have	$^{10}B_5 + ^{1}n_0 \rightarrow ^{4}He_2 + ^{7}Li_3$
	number of nucleons balancing	
	11 nucleons on left, required 11 nucleons on right.	
	Alpha will be present in products	
В	Element	Lithium-7
		Helium-4

5.4

With Alpha decay ensure the sum of nucleons are conserved and that the number of protons remains the same. $^{234}U_{92} \rightarrow {}^{4}He_2 + {}^{230}Th_{90}$

5.5

With Beta the number of protons will increase by 1 proton. The number of nucleons will still remain the same. Remember 1 neutron is changing into a proton and emitting an electron.

 ${}^{42}K_{19} \rightarrow {}^{0}e_{-1} + {}^{42}Ca_{20}$

5.6

Parent	Nucleons/Protons	Daughter	
$^{141}Ba_{56}$	141 Nucleons	$^{141}Cs_{55}$	141 Nucleons
	56 Protons		55 Protons
	85 Neutrons		86 Neutrons

 $^{141}\text{Ba}_{56} \ \ \rightarrow \ \ ^{0}\text{e}_{+1} \ \ + \ \ ^{141}\text{Cs}_{55}$

With positron decay the number of protons will decrease as a proton changes into a neutron and then emits a positron. A positron is an anti-matter particle.

5.7

With Beta the number of protons will increase by 1 proton. The number of nucleons will still remain the same. Remember 1 neutron is changing into a proton and emitting an electron.

Parent	Nucleons/Protons	Daughter	Nucleons/Protons
$^{131}I_{53}$	131 Nucleons	131 Xe ₅₄	131 Nucleons
	53 Protons		54 Protons
	78 Neutrons		77 Neutrons

$$^{131}I_{53} \rightarrow {}^{0}e_{-1} + {}^{131}Xe_{54}$$

5.8

This is a Beta decay system. With Beta the number of protons will increase by 1 proton. The number of nucleons will still remain the same. Remember 1 neutron is changing into a proton and emitting an electron.

Parent	Nucleons/Protons	Daughter	Nucleons/Protons
Molybdenum-99	99 Nucleons	Technetium	99 Nucleons
⁹⁹ Mo ₄₂	42 Protons 57 Neutrons	⁹⁹ Tc ₄₃ *	43 Protons 56 Neutrons

 $^{99}Mo_{42} \rightarrow ^{99}Tc_{43}* + ^{0}e_{-1}$

5.9

This is an Alpha decay system. With Alpha decay ensure the sum of nucleons are conserved and that the number of protons remains the same. A Helium nuclei is emitted.

Parent	Nucleons/Protons	Daughter	Nucleons/Protons
Radon-222	222 Nucleons	Polonium-218	218 Nucleons
	86 Protons		84 Protons
$^{222}Rn_{86}$	136 Neutrons	²¹⁸ Po ₈₄	134 Neutrons
		Helium-4 (Alpha)	4 Nucleons
		⁴ He ₂	2 Protons 2 Neutrons

 222 Rn₈₆ \rightarrow 218 Po₈₄ + 4 He₂

5.10

With fusion and fission events ensure the sum of nucleons are conserved and that the number of protons/neutrons remains the same.

Parents	Nucleons/Protons	Daughter	Nucleons/Protons
Deuterium	2 Nucleons	Helium-4	4 Nucleons
	1 Protons		2 Protons
² H ₁	1 Neutrons	⁴ He ₂	2 Neutrons
Tritium	2 Nucleons		
³ H ₁	1 Protons 2 Neutrons		1 Neutron

$^{2}\text{H}_{1}$ + $^{3}\text{H}_{1}$ \rightarrow $^{4}\text{He}_{2}$ + $^{1}n_{0}$

5.11

Ensure the sum of nucleons are conserved and that the number of protons/neutrons remains the same.

Parents	Nucleons/Protons	Daughters	Nucleons/Protons
Nitrogen-14	14 Nucleons	Carbon-14	14 Nucleons
	7 Protons		6 Protons
$^{14}N_{7}$	7 Neutrons	$^{14}C_{6}$	8 Neutrons
Cosmic Particle		Proton	
$^{1}n_{0}$	1 Neutrons	${}^{1}H_{1}$	1 Proton

$$^{14}N_7 + {}^1n_0 \longrightarrow {}^{14}C_6 + {}^1H_1$$

5.12

Alpha Decay of Pu-239	239 Pu ₉₄ \rightarrow 4 He ₂ + 235 U ₉₂
Beta Decay of U-235	$^{235}U_{92} \rightarrow ^{235}Np_{93} + ^{0}e_{-1}$

5.13

Alpha Decay of Th-232	232 Th ₉₀ \rightarrow 4 He ₂ + 228 Ra ₈₈
Beta Decay of Ra-228	$^{228}Ra_{88} \rightarrow ^{228}Ac_{89} + ^{0}e_{-1}$
Beta Decay of Ac-228	$^{228}Ac_{89} \rightarrow ^{228}Th_{90} + ^{0}e_{-1}$
Alpha Decay of Th-228	$^{228}\text{Th}_{90} \rightarrow ^{4}\text{He}_2 + ^{224}\text{Ra}_{88}$
Alpha Decay of Ra-224	$^{224}Ra_{88} \rightarrow ^{4}He_2 + ^{220}Rn_{86}$

5.14

With fusion and fission events ensure the sum of nucleons are conserved and that the number of protons/neutrons remains the same.

Parents	Nucleons/Protons	Daughters	Nucleons/Protons
Uranium-235	235 Nucleons	To be made up of:	
²³⁵ U ₉₂	92 Protons	236 Nucleons	
	143 Neutrons	92 Protons	
Neutron	+	144 Neutrons	
$^{1}n_{0}$	1		
		Barium-141	141 Nucleons
		141 Ba ₅₆	56 Protons
			85 Neutrons
		Krypton-92	92 Nucleons
		92 Kr ₃₆	36 Protons
			56 Neutrons
			3 Neutrons required to
			make number of
			nucleons conserved.

${}^{235}\mathrm{U}_{92} \ \ + \ \ {}^{1}n_0 \ \ \rightarrow \ \ {}^{141}\mathrm{Ba}_{56} \ \ + \ \ {}^{92}\mathrm{Kr}_{36} \ \ + \ \ 3 \ \ {}^{1}n_0$

5.15

Parents	Nucleons/Protons	Daughters	Nucleons/Protons
Uranium-235	235 Nucleons	To be made up of:	
²³⁵ U ₉₂	92 Protons	236 Nucleons	
	143 Neutrons	92 Protons	
Neutron	+	144 Neutrons	
$^{1}n_{0}$	1		
		Antimony-134	134 Nucleons
		¹⁴¹ Sb ₅₁	51 Protons
			83 Neutrons
		Yttrium-95	95 Nucleons
		⁹⁵ Y ₃₉	39 Protons
		- 59	56 Neutrons
			2 Protons and 5
			Neutrons required to
			make number of
			nucleons conserved.
			Likely to be Alpha as
			well
$^{235}U_{92} + {}^{1}n_0$	\rightarrow ¹³⁴ Sb ₅₁ +	${}^{95}Y_{39}$ + 3 ${}^{1}n_0$	+ ⁴ He ₂

5.17

Assuming with alpha bombardment that no beta/positron occurs at the same time thus conservation of nucleons.

Parents	Nucleons/Protons	Daughters	Nucleons/Protons
Boron-11 ¹¹ B ₅	15 Nucleons 7 Protons 8 Neutrons	To be made up of: 15 Nucleons 7 Protons	
Alpha ⁴ He ₂		8 Neutrons Nitrogen-14 ¹⁴ N ₇	14 Nucleons 7 Protons 7 Neutrons
			1 Neutron required to make number of nucleons conserved.

 ${}^{11}\mathrm{B}_5 \ + \ {}^{4}\mathrm{He}_2 \ \rightarrow \ {}^{1}n_0 \ + \ {}^{14}\mathrm{N}_7$

